skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Do, Kim-Anh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In microbiome analysis, researchers often seek to identify taxonomic features associated with an outcome of interest. However, microbiome features are intercorrelated and linked by phylogenetic relationships, making it challenging to assess the association between an individual feature and an outcome. This paper proposes a novel conditional association test, CAT, that can account for other features and phylogenetic relatedness when testing the association between a feature and an outcome. CAT adopts a permutation approach, measuring the importance of a feature in predicting the outcome by permuting operational taxonomic unit/amplicon sequence variant counts belonging to that feature from the data and quantifying how much the association with the outcome is weakened through the change in the coefficient of determination $$R^{2}$$. Compared with marginal association tests, it focuses on the added value of a feature in explaining outcome variation that is not captured by other features. By leveraging global tests including PERMANOVA and MiRKAT-based methods, CAT allows association testing for continuous, binary, categorical, count, survival, and correlated outcomes. We demonstrate through simulation studies that CAT can provide a direct quantification of feature importance that is distinct from that of marginal association tests, and illustrate CAT with applications to two real-world studies on the microbiome in melanoma patients: one examining the role of the microbiome in shaping immunotherapy response, and one investigating the association between the microbiome and survival outcomes. Our results illustrate the potential of CAT to inform the design of microbiome interventions aimed at improving clinical outcomes. 
    more » « less
  2. Abstract SummaryAdvances in survival analysis have facilitated unprecedented flexibility in data modeling, yet there remains a lack of tools for illustrating the influence of continuous covariates on predicted survival outcomes. We propose the utilization of a colored contour plot to depict the predicted survival probabilities over time. Our approach is capable of supporting conventional models, including the Cox and Fine–Gray models. However, its capability shines when coupled with cutting-edge machine learning models such as random survival forests and deep neural networks. Availability and implementationWe provide a Shiny app at https://biostatistics.mdanderson.org/shinyapps/survivalContour/ and an R package available at https://github.com/YushuShi/survivalContour as implementations of this tool. 
    more » « less
  3. Abstract The successful development and implementation of precision immuno-oncology therapies requires a deeper understanding of the immune architecture at a patient level. T-cell receptor (TCR) repertoire sequencing is a relatively new technology that enables monitoring of T-cells, a subset of immune cells that play a central role in modulating immune response. These immunologic relationships are complex and are governed by various distributional aspects of an individual patient's tumor profile. We propose Bayesian QUANTIle regression for hierarchical COvariates (QUANTICO) that allows simultaneous modeling of hierarchical relationships between multilevel covariates, conducts explicit variable selection, estimates quantile and patient-specific coefficient effects, to induce individualized inference. We show QUANTICO outperforms existing approaches in multiple simulation scenarios. We demonstrate the utility of QUANTICO to investigate the effect of TCR variables on immune response in a cohort of lung cancer patients. At population level, our analyses reveal the mechanistic role of T-cell proportion on the immune cell abundance, with tumor mutation burden as an important factor modulating this relationship. At a patient level, we find several outlier patients based on their quantile-specific coefficient functions, who have higher mutational rates and different smoking history. 
    more » « less